Bibliography

Bibliography#

[AAAHearn+18]

B. A. Archinal, C. H. Acton, M. F. A'Hearn, A. Conrad, G. J. Consolmagno, T. Duxbury, D. Hestroffer, J. L. Hilton, R. L. Kirk, S. A. Klioner, D. McCarthy, K. Meech, J. Oberst, J. Ping, P. K. Seidelmann, D. J. Tholen, P. C. Thomas, and I. P. Williams. Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015. Celestial Mechanics and Dynamical Astronomy, 130(3):22, March 2018. doi:10.1007/s10569-017-9805-5.

[AAC+19]

B. A. Archinal, C. H. Acton, A. Conrad, T. Duxbury, D. Hestroffer, J. L. Hilton, L. Jorda, R. L. Kirk, S. A. Klioner, J.-L. Margot, K. Meech, J. Oberst, F. Paganelli, J. Ping, P. K. Seidelmann, A. Stark, D. J. Tholen, Y. Wang, and I. P. Williams. Correction to: report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015. Celestial Mechanics and Dynamical Astronomy, 131(12):61, December 2019. doi:10.1007/s10569-019-9925-1.

[BMW71]

Roger R. Bate, Donald D. Mueller, and Jerry E. White. Fundamentals of Astrodynamics. Dover Publications, New York, 1971. ISBN 978-0-486-60061-1.

[Col92]

Peter Colwell. Bessel Functions and Kepler's Equation. The American Mathematical Monthly, 99(1):45, January 1992. doi:10.2307/2324547.

[Con86]

Bruce A. Conway. An improved algorithm due to Laguerre for the solution of Kepler's equation. Celestial Mechanics, 39(2):199–211, June 1986. doi:10.1007/BF01230852.

[Cur20]

Howard D Curtis. Orbital Mechanics for Engineering Students. Elsevier, fourth edition, 2020. ISBN 978-0-08-102133-0.

[GradshteuinRJ07]

I. S. Gradshteĭn, I. M. Ryzhik, and Alan Jeffrey. Table of Integrals, Series, and Products. Academic Press, Amsterdam ; Boston, seventh edition, 2007. ISBN 978-0-12-373637-6.

[GG06]

Peter Graneau and Neal Graneau. In the Grip of the Distant Universe: The Science of Inertia. World Scientific, Hackensack, NJ, 2006. ISBN 978-981-256-754-3.

[Hoh60]

Walter Hohmann. The Attainability of Heavenly Bodies. NASA, 1960.

[KLMR11]

Wang Sang Koon, Martin W. Lo, Jerrold E. Marsden, and Shane D. Ross. Dynamical Systems, the Three-Body Problem, and Space Mission Design. CalTech, 1.2 edition, April 2011.

[Mei85]

R. Meire. An Efficient Method for Solving Barker's Equation. Journal of the British Astronomical Association, 95:113, April 1985.

[PFWB21]

Ryan S. Park, William M. Folkner, James G. Williams, and Dale H. Boggs. The JPL Planetary and Lunar Ephemerides DE440 and DE441. The Astronomical Journal, 161(3):105, February 2021. doi:10.3847/1538-3881/abd414.

[PC13]

John E. Prussing and Bruce A. Conway. Orbital Mechanics. Oxford University Press, New York, second edition, 2013. ISBN 978-0-19-983770-0.

[Rho19]

Brandon Rhodes. Skyfield: high precision research-grade positions for planets and Earth satellites generator. July 2019. arXiv:1907.024.

[Rub18a]

Ari Rubinsztejn. Dynamics of the 3-Body Problem. https://gereshes.com/2018/11/12/dynamics-of-the-3-body-problem/, November 2018.

[Rub18b]

Ari Rubinsztejn. Lagrange Points - The 3-Body Problem. https://gereshes.com/2018/12/03/an-introduction-to-lagrange-points-the-3-body-problem/, December 2018.

[Rub18c]

Ari Rubinsztejn. Stability of the Lagrange Points - Three Body Problem. https://gereshes.com/2018/12/17/stability-of-the-lagrange-points-three-body-problem/, December 2018.

[Rub19]

Ari Rubinsztejn. Matlab Astrodynamics Library - CR3BP. https://gereshes.com/2019/03/11/matlab-astrodynamics-library-cr3bp/, March 2019.

[Sac20]

Andrea Sacchetti. Francesco Carlini: kepler's equation and the asymptotic solution to singular differential equations. Historia Mathematica, pages S0315086020300446, July 2020. doi:10.1016/j.hm.2020.06.001.

[Sta92]

E. M. Standish. Keplerian Elements for Approximate Posistions of the Major Planets. Technical Report, NASA/JPL, 1992.

[Sta21]

E. M. Standish. Approximate Positions of the Planets. https://ssd.jpl.nasa.gov/planets/approx_pos.html, 2021.

[Zwi03]

Daniel Zwillinger. CRC Standard Mathematical Tables and Formulae. Chapman & Hall/CRC, Boca Raton, 2003. ISBN 978-1-4200-3534-6.